3330. Modern Philosophy. Philosophical thought from
the Renaissance to the 19th century including Descartes,
Spinoza, Locke, Berkeley, Hume and Kant.

3340. Nineteenth-Century Philosophy. Chief
philosophies including Schopenhauer, Nietzsche and
Kierkegaard; implications for problems of science, religion
and politics. Prerequisite(s): upper-division standing or
consent of department.

3350. Early 20th-Century Philosophy. Important
systems of thought in the early 20th century; basic
concepts of representative thinkers such as Moore,
Russell, Whitehead, Wittgenstein and Sartre.
Prerequisite(s): upper-division standing or consent of
department.

3360. American Philosophy. Writings of C.S. Pierce,
William James, John Dewey and George Herbert Mead.
Prerequisite(s): upper-division standing or consent of
department.

3400. Ethical Theory. 3 hours. Analysis of major historical
and contemporary ethical theories.

3401. Ethics. 3 hours. Analysis of the most influential
theories of ethics developed in the Western tradition on the
basis of the reading of original works by such authors as
Aristotle, Aquinas, Kant, Bentham and Mill. Examination
of the ethical dimension of a number of contemporary
moral problems in the light of these works. Prerequisite(s):
acceptance into the University Honors Program.

3570. Hebrew Bible. 3 hours. Philosophical and ethical
concepts of the Hebrew Bible compared with ancient pagan
thought and subsequent Western culture. Concepts discussed
include creation, revelation, holiness, faith, covenant,
prophecy, idolatry, chosen people, justice, mercy, truth and
peace. Prerequisite(s): upper-division standing or consent of
department.

3573. Introduction to Judaism. 3 hours. Examines the
practices, themes and movements of Judaism, emphasizing
the impact of modernity on these rubrics.

3575. Judaic Religion and Philosophy. 3 hours. Introduction
to a wide range of Judaic texts – biblical, medieval and
modern – which address Jewish law, history and thought
from diverse points of view.

3580. Early Christian Thought. 3 hours. Selected first-
century Christian documents in light of Dead Sea Scrolls,
Roman mystery religions, and biblical and extrabiblical
Hebrew writings. Prerequisite(s): upper-division standing
or consent of department.

3585. South Asian Philosophy and Religion. 3 hours. Study
of South Asian philosophical and religious thought from
earliest times to the present: the Indus Valley civilization,
Vedic religion, the development of Jainism, Buddhism and
devotional Hinduism, the philosophical schools, medieval
Indian thought, Sikhism, and modern Indian philosophy.
Prerequisite(s): upper-division standing or consent of
department.

3595. East Asian Philosophy and Religion. 3 hours.
Philosophical study of East Asia from earliest times
to the present, including ancient Chinese religion; Taoist,
Confucian, Mohist and Legalist philosophies; Chinese
Buddhism and Neo-Confucianism; the influence of Shinto,
Buddhism and Neo-Confucianism upon medieval Japan;
and Japanese philosophy since the Meiji Restoration.
Prerequisite(s): upper-division standing or consent of
department.

3600. Philosophy of Religion. 3 hours. Arguments for and
against existence of a deity; meanings of concepts of religion,
evil, good and worship; impact of religious beliefs and
commitments on social and moral life.

3800. Philosophy of Psychology and Mind. 3 hours.
The brain/mind relationship; free will versus determinism;
positivism versus critical realism. Consciousness and the
unconscious; rationality; the naturalistic fallacy; verbal
behavior; humanism; mental health. Prerequisite(s): upper-
division standing or consent of department. Recommended
for psychology majors.

4400. Metaphysics. 3 hours. Problems and structures in
idealism, realism, naturalism and process metaphysics.
Prerequisite(s): upper-division standing or consent of
department.

4500. Existentialism. 3 hours. The place of man in the
world, and his relation to problems of authenticity, anxiety
and forlornness; Kierkegaard, Nietzsche, Heidegger and
Sartre. Prerequisite(s): upper-division standing or consent of
department.

4600. Phenomenology. 3 hours. Techniques and principles
of phenomenological investigation; Husserl, Scheler and
Merleau-Ponty. Prerequisite(s): upper-division standing or
consent of department.

4700. Environmental Ethics. 3 hours. An examination of
basic positions in the field of environmental ethics with
emphasis on legal and moral rights for nature, animal
liberations and Western philosophical and religious
traditions. Prerequisite(s): one previous course in philosophy
or consent of department.

4900–4910. Special Problems. 1-3 hours each.

4960. Proseminar in Philosophy. 3 hours. Seminar approach
to philosophical method; dialectical, phenomenological
and/or analytic techniques. Prerequisite(s): senior standing or
consent of department. May be repeated for credit as topics
vary.

4970. Capstone Seminar. 3 hours. Seminar on philosophical
writing and argument focusing on the comparative study of
important figures in the history of philosophy. Prerequisite(s):
senior standing and consent of department. Required course
for philosophy majors only.

---

Physical Education

see Kinesiology, Health Promotion and Recreation

---

Physics

Astronomy, PHYS

1050–1060. Descriptive Astronomy. 3 hours each. (3:1)
Planetary and stellar astronomy; techniques of astronomical
measurement; developments related to evolution and
systematics of the solar system and the stars. For all students
interested in astronomy. Prerequisite(s): proficiency in algebra.

1050 (PHYS 1311). The Solar System. History of astronomy
and the physical properties of the earth, moon, planets and
minor bodies. May be used to satisfy a portion of the Natural
Sciences requirement of the University Core Curriculum.

1060 (PHYS 1312). Stars and the Universe. Properties of
stars and stellar systems and a study of the origin,
evolution and future of the universe. May be used to
satisfy a portion of the Natural Sciences requirement of the
University Core Curriculum.
1051 (PHYS 1411)-1061 (PHYS 1112). Laboratory Sequence for Descriptive Astronomy. 1 hour each. (0;1)

1051. The Solar Systems Observations Laboratory. Outdoor laboratory emphasizes the use of the astronomical telescope to observe the moon, planets, comets, etc. The indoor laboratories focus on the use of the planetarium and photographic studies of the moon and planets. This course is designed to accompany PHYS 1050. Prerequisite(s): credit for or concurrent enrollment in PHYS 1050. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1061. Stellar Systems Observations Laboratory. Outdoor laboratory emphasizes the use of the astronomical telescope to observe the analysis of stellar spectra, globular clusters and their galactic distributions, and classification of galaxies. This course is designed to accompany PHYS 1060. Prerequisite(s): credit for or concurrent enrollment in PHYS 1060. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

Physics, PHYS

1210 (PHYS 1415 or 1115/1135). Conceptual Physics. 4 hours. (3;3) Principles and applications of mechanics, heat, sound, light, electricity and atomic physics for the elementary education major. Prerequisite(s): MATH 1100 or higher and interdisciplinary studies (elementary education) major status. May not use both PHYS 1210 and 1311 to satisfy a laboratory science requirement. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum (by elementary education students).

1251. Science and Technology of Musical Sound. 3 hours. Sound production; nature of vibrations in percussion, string, and wind instruments. Sound propagation; sound speed; echoes. Sound intensity, physical and perceived. Sound pitch, physical and perceived; intervals. Complex sounds; harmonic series. Room acoustics; reverberation time; ideal listening rooms. Wave phenomena; interference and diffraction. Digital sound recording; musical scales; the human voice. Prerequisite(s): MATH 1100 or above. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum (by elementary education students).

1271. Science and Technology of Musical Sound Laboratory. 1 hour. (0;3) Companion laboratory to PHYS 1251. Prerequisite(s): PHYS 1251 (may be taken concurrently). May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1311 (PHYS 1310). Introduction to the World of Physics. 3 hours. Basic principles and concepts of physics for the liberal-arts major necessary to the understanding of our increasingly technological environment and the science on which it is based; and current ideas concerning the micro world and the universe at large. Topics include: mechanics; properties of matter; heat; sound; electricity and magnetism; light; and atomic, nuclear and fundamental particle physics. Prerequisite(s): proficiency in algebra. May not use both PHYS 1210 and PHYS 1311 to satisfy a laboratory science requirement. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1312. Essential Physics. 3 hours. (3;0;1) Principles and concepts of physics essential to the understanding of modern technological society by the liberal arts major are examined in their cultural context. Topics include Newtonian mechanics, relativity, light, electromagnetic theory, atomic physics, quantum mechanics and nuclear physics. Prerequisite(s): concurrent enrollment in PHYS 1332 and admission to University Honors Program. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1331 (PHYS 1110). Introduction to the World of Physics Laboratory. 1 hour. (0;3) Prerequisite(s): credit for or concurrent enrollment in PHYS 1311. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1332. Essential Physics Laboratory. 1 hour. (0;3) Companion laboratory to PHYS 1312. Prerequisite(s): concurrent or prior enrollment in PHYS 1312 and admission to University Honors Program. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1410-1420. General Physics. 3 hours each. (3;0;1) Non-calculus based physics sequence suitable for life sciences majors and preprofessional students.

1410 (PHYS 1301). General Physics I. Principles and applications of mechanics, sound and heat. Prerequisite(s): proficiency in algebra and trigonometry. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1420 (PHYS 1302). General Physics II. Principles and applications of electricity, magnetism, light and atomic physics. Prerequisite(s): PHYS 1410 or consent of department. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1430-1440. Laboratory Sequence for General Physics. 1 hour each. (0;3) Laboratory to accompany the course sequence 1410-1420.

1430 (PHYS 1101). General Physics Laboratory I. Prerequisite(s): credit for or concurrent enrollment in PHYS 1410. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1440 (PHYS 1102). General Physics Laboratory II. Prerequisite(s): credit for or concurrent enrollment in PHYS 1420. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1510-1520. General Physics with Calculus Sequence. 3 hours each. (3;0;1) Calculus-based physics sequence suitable for future science teachers and for pre-medicine and other health-related preprofessional students.

1510. General Physics I with Calculus. Principles and applications of mechanics, sound and heat. Prerequisite(s): MATH 1710 or concurrent enrollment, and consent of department. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1520. General Physics II with Calculus. Principles and applications of electricity, magnetism, light, atomic and nuclear physics. Prerequisite(s): PHYS 1510. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.
1530–1540. Laboratory Sequence for General Physics with Calculus. 1 hour each. (0;3) Laboratory to accompany the course sequence 1510–1520.

1530. General Physics with Calculus Laboratory I. Laboratory to accompany PHYS 1510. Prerequisite(s): concurrent enrollment in PHYS 1510. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1540. General Physics with Calculus Laboratory II. Laboratory to accompany PHYS 1520. Prerequisite(s): concurrent enrollment in PHYS 1520. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

1710–2220–3010. General Technical Physics. 3 hours each. (3;0;1) Calculus-based physics sequence suitable for physics, engineering physics, engineering technology, mathematics, computer science and chemistry majors.

1710 (PHYS 2325). Mechanics. Laws of motion; inertia, acceleration, force, energy, momentum and angular momentum. Rotational and oscillatory motion. Gravitation. Prerequisite(s): credit for or concurrent enrollment in MATH 1710. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

2220 (PHYS 2326). Electricity and Magnetism. Electric fields, dc and ac circuits, magnetic fields and magnetic induction. Electric and magnetic properties of matter. Prerequisite(s): PHYS 1420 or 1710 and credit for or concurrent enrollment in MATH 1720. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

3010. Modern Physics. Relativity, quantum physics, atomic structure, properties of matter and nuclear physics. Prerequisite(s): PHYS 1420 or 2220, and MATH 1710.

1730–2240–3030. Laboratory Sequence for General Technical Physics. 1 hour each. (0;3) Laboratory to accompany the course sequence 1710–2220–3010.

1730 (PHYS 2125). Laboratory in Mechanics. Prerequisite(s): credit for or concurrent enrollment in PHYS 1710. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

2240 (PHYS 2126). Laboratory in Wave Motion, Electricity, Magnetism and Optics. Prerequisite(s): credit for or concurrent enrollment in PHYS 2220. May be used to satisfy a portion of the Natural Sciences requirement of the University Core Curriculum.

3030. Laboratory in Modern Physics. Prerequisite(s): credit for or concurrent enrollment in PHYS 3010.

2900–2910. Special Problems. 1-3 hours each. Individualized instruction in theoretical or experimental problems. For elective credit only.

3210–3220. Mechanics. 3 hours each. (3;0;1)

3210. Vector treatment of the motion of a particle in one, two and three dimensions; motion of a system of particles; conservation laws; the statics of fluids and solids; the motion of rigid bodies. Prerequisite(s): PHYS 2220.

3220. Gravitation; moving coordinate systems; mechanics of continuous media; generalized coordinates and the Lagrangian and Hamiltonian formulations of mechanics; applications of tensors to rotation of rigid bodies; theory of small vibrations. Prerequisite(s): PHYS 3210.

3310. Mathematical Methods in the Physical Sciences. 3 hours. (3;0;1) Application of advanced mathematical techniques to the solution of problems in physics. Vector spaces, complex analysis, matrices, linear transformations, vector calculus, Fourier series and integrals, the Laplace transformation, and special functions. Prerequisite(s): PHYS 2220 and MATH 1720.

3420. Electronics. 4 hours. (1-3;4-6) Analog and digital electronics, applications and diagnostic techniques. Selections from direct- and alternating-current circuits, and measurements; uses of diodes, transistors, etc., as switches; applications of Boolean algebra; memory and storage devices; counters and shift registers; computer structures and bussing; servo systems and operations amplifiers; digital and analog-digital instrumentation and interfacing with computers. Prerequisite(s): PHYS 1420/1440 or 2220/2240, and MATH 1710.

4110. Statistical and Thermal Physics. 3 hours. (3;0;1) Basic probability concepts; statistical description of systems of particles; statistical thermodynamics and thermodynamic laws; macroscopic and microscopic descriptions of systems; phase transformation. Prerequisite(s): PHYS 3010/3030.

4150. Experimental Physics I. 1 hours. (1;6) Laboratory experience via use of research-quality instruments. Modern experiments in solid state, atomic and molecular physics. Topics, which may vary, include nonlinear dynamics and chaos in circuits and lasers; SQUIDS and high temperature superconductivity; holography; X-ray diffraction; and electron scanning microscopy. Prerequisite(s): PHYS 3010/3030.

4160. Experimental Physics II. 3 hours. (1;6) Experimental techniques of precision measurements in nuclear and atomic physics. Topics, which may vary, cover recent developments in modern physics suitable for advanced undergraduates and graduate students. Rutherford scattering, low energy nuclear reactions; ion-induced inner shell ionization at MeV energies; nuclear magnetic resonance to obtain local electronic structure; magnetic transport and magneto-optics; and modern techniques in surface analysis (ion sputtering). Prerequisite(s): PHYS 3010/3030.

4210. Electricity and Magnetism. 3 hours. (3;0;1) Vector treatment of static electric and magnetic fields in free space; multipole field distributions, boundary value problems, fields in material media, and electromagnetic waves. Prerequisite(s): PHYS 2220/2240.

4220. Electromagnetic Waves. 3 hours. (3;0;1) Maxwell's equations; plane and spherical waves; reflection, refraction, guided waves, radiation and scattering. Prerequisite(s): PHYS 4210.

4310. Quantum Mechanics. 3 hours. (3;0;1) Origins of the modern theory of atomic structure; Schrodinger's formulation of non-relativistic, single-particle quantum mechanics and application to simple systems; the one-electron atom. Prerequisite(s): PHYS 3010/3030.

4350. Advanced Modern Physics I – Atomic and Molecular Physics. 3 hours. Introduction to various quantum mechanical models of atomic and molecular structure and spectra. Hydrogen atom and simple spectra; external fields, line splitting; line broadening; addition of angular momentum and spin; effective fields, variational method; Hartree and Hartree-Fock theory; structure and spectra of multielectron atoms; Rydberg atoms; molecular binding; rotational, vibrational and electronic states and spectra of diatomic molecules. Prerequisite(s): PHYS 4310.
4360. Advanced Modern Physics II – Nuclear and Particle Physics. 3 hours. Comprehensive study of nuclear structure and dynamics; survey of particle physics; properties of the nuclear force; interpretation of experimental data via specific many-body models; interaction of radiation with matter; classification of particles and nuclei; scattering theory; conservation laws and symmetry; and contemporary results. Prerequisite(s): PHYS 4350.

4420. Physical Optics. 3 hours. (3;0;1) Huygens’ principle and application to geometrical optics; interference phenomena; Fraunhofer and Fresnel diffraction; polarization; electromagnetic theory of light and interaction with matter. Part of the instruction will be in a laboratory setting. Prerequisite(s): PHYS 2220/2240.

4500. Introduction to Solid-State Physics. 3 hours. An introduction to the major areas of solid-state physics, including crystal structure and symmetry, lattice vibrations and phonons, thermal properties, energy bands, semiconductors, superconductivity, and magnetic properties. Prerequisite(s): PHYS 3010.

4550. Modern Classical Dynamics. 3 hours. Introduction to nonlinear dynamical systems; onset of chaos, phase space portraits, universality of chaos, strange attractors, experimental verification, fluid dynamics and the KAM theorem. Prerequisite(s): PHYS 2220.


4610. Topics in Astronomy. 3 hours. (3;0;1) Selected topics in planetary and stellar astronomy: techniques of astronomical observation and measurement; evolution, composition and properties of our solar system and the universe; history of astronomy. Designed for students seeking secondary physical science/science teacher certification. The recitation hour for PHYS 4610 serves to cover teaching methods in astronomy, including the demonstration of measurement equipment (e.g., spectrometers, digital imaging, telescopes, etc.). Prerequisite(s): consent of department.

4630. Topics in Astronomy Laboratory. 1 hour. (0,3) Laboratory sequence for PHYS 4610. Designed for students seeking secondary physical science/science teacher certification. Emphasizes data acquisition (e.g., via astronomical observations), data analysis (e.g., of stellar spectra) for the selected topics covered in PHYS 4610, and includes an overview of how to set up the equipment for the laboratory exercises. Prerequisite(s): credit for or concurrent enrollment in PHYS 4610.

4700. Procedures and Materials for Science Instruction. 3 hours. (2;4) Problems, techniques and procedures for classroom and laboratory experiences based on current science education research. Recommended for students who are obtaining secondary teacher certification in a science field. Field experience in the public schools is required. Prerequisite(s): 16 hours of physics, completion of freshman and sophomore science courses required for certification and consent of department. Does not count as an elective toward a major or minor in physics, except for students seeking certification. (Same as CHEM 4700 and BIOL 4700.)

4710. Foundations of Theoretical Physics. 3 hours. Overview of topics in theoretical physics. Symmetry, mechanics: Newton’s laws, celestial mechanics, Hamiltonian formalism; electromagnetism: Maxwell’s equations, nonlinear optics and classical field theory, quantum optics, lasers, chaotic diffraction; quantum mechanics: measurements and scattering theory; statistical physics: entropy, equilibrium statistical mechanics; and contemporary areas: fractals, chaos and nonlinear dynamics. Topics may vary. Prerequisite(s): PHYS 4210, 4310; PHYS 4110, which may be taken concurrently.

4900-4910. Special Problems. 1-3 hours each. Must have the consent of the faculty member prior to enrollment. May be repeated for credit.

4950. Senior Thesis. 3-6 hours. (0, 0, 9-18) Individual research on a problem chosen in consultation with a faculty member. Research may be conducted on campus, during an internship off-campus, or as an exchange student in a study abroad program. Prerequisite(s): consent of faculty member.

4960–4970. Science Institute (Physics). 1-6 hours each. For students accepted by the university as participants in special institute programs. May be repeated for credit but not to exceed a total of 6 hours in each course.

---

Political Science

Political Science, PSCI

Students are eligible to take advanced courses after 6 hours of introductory work. Prerequisites: PSCI 1040 and 1050 are prerequisite to advanced courses in American government and politics, public law, public policy, and international relations (See Fields A, B, D and F in departmental copy). Three hours of political science are prerequisite to advanced courses in political theory and methodology and comparative government and politics (See Fields C and E in departmental copy).

1040-1050-1060. American Government. 3 hours each. PSCI 1040 must be taken to satisfy the requirement of a course emphasizing U.S. and Texas constitutions. PSCI 1050 or PSCI 1060 fulfills the remaining 3 hours of the legislative requirement for 6 hours of government.


1060. American Government: Topics. Individually or team-taught courses that explore in depth a substantive aspect of American government or politics. Topics vary and may include (but are not limited to) specific contemporary public issues, institutional simulations, and politics through the arts and literature. May be repeated for credit as topics vary. May be used for duplication only when topic is the same.